Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia

Int J Mol Sci. 2022 Sep 27;23(19):11396. doi: 10.3390/ijms231911396.

Abstract

Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a plasma membrane protein expressed on the apical surface of secretory epithelia of the airways. In the airways, defective or absent function of the CFTR protein determines abnormalities of chloride and bicarbonate secretion and, in general, of the transepithelial homeostasis that lead to alterations of airway surface liquid (ASL) composition and properties. The reduction of ASL volume impairs ciliary beating with the consequent accumulation of a sticky mucus. This situation prevents normal mucociliary clearance, favoring the survival and proliferation of bacteria and contributing to the genesis of the CF pulmonary disease. We explored the potential of some CFTR modulators, namely ivacaftor, tezacaftor, elexacaftor and their combination KaftrioTM, capable of partially recovering the basic defects of the CFTR protein, to ameliorate the transepithelial fluid transport and the viscoelastic properties of the mucus when used singly or in combination. Primary human bronchial epithelial cells obtained from CF and non-CF patients were differentiated into a mucociliated epithelia in order to assess the effects of correctors tezacaftor, elexacaftor and their combination with potentiator ivacaftor on the key properties of ASL, such as fluid reabsorption, viscosity, protein content and pH. The treatment of airway epithelia bearing the deletion of a phenylalanine at position 508 (F508del) in the CFTR gene with tezacaftor and elexacaftor significantly improved the pericilial fluid composition, reducing the fluid reabsorption, correcting the ASL pH and reducing the viscosity of the mucus. KaftrioTM was more effective than single modulators in improving all the evaluated parameters, demonstrating once more that this combination recently approved for patients 6 years and older with cystic fibrosis who have at least one F508del mutation in the CFTR gene represents a valuable tool to defeat CF.

Keywords: bronchial epithelial cell culture; correctors; cystic fibrosis; ion transport; pericilial mucus properties.

MeSH terms

  • Aminophenols
  • Benzodioxoles / pharmacology
  • Bicarbonates / metabolism
  • Chlorides / metabolism
  • Cystic Fibrosis Transmembrane Conductance Regulator* / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator* / metabolism
  • Cystic Fibrosis* / drug therapy
  • Cystic Fibrosis* / genetics
  • Cystic Fibrosis* / metabolism
  • Humans
  • Mutation
  • Phenylalanine / genetics
  • Quinolones

Substances

  • Aminophenols
  • Benzodioxoles
  • Bicarbonates
  • Chlorides
  • Quinolones
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • ivacaftor
  • Phenylalanine