Spatiotemporal Variations of Carbon Emissions and Their Driving Factors in the Yellow River Basin

Int J Environ Res Public Health. 2022 Oct 8;19(19):12884. doi: 10.3390/ijerph191912884.

Abstract

The Yellow River Basin (YRB) is a significant area of economic development and ecological protection in China. Scientifically clarifying the spatiotemporal patterns of carbon emissions and their driving factors is of great significance. Using the methods of spatial autocorrelation analysis, hot-spot analysis, and a geodetector, the analysis framework of spatiotemporal differentiation and the driving factors of carbon emissions in the YRB was constructed in this paper from three aspects: natural environment, social economy, and regional policy. Three main results were found: (1) The carbon emissions in the YRB increased gradually from 2000 to 2020, and the growth rates of carbon emissions in the different river reaches were upper reaches > middle reaches > lower reaches. (2) Carbon emissions have an obvious spatial clustering character from 2000-2020, when hot spots were concentrated in the transition area from the Inner Mongolia Plateau to the Loess Plateau. The cold spots of carbon emissions tended to be concentrated in the junction area of Qinghai, Gansu, and Shaanxi. (3) From 2000 to 2020, the driving factors of spatial differentiation of carbon emissions in the YRB and its different reaches tended to be diversified, so the impacts of socioeconomic factors increased, while the impacts of natural environmental factors decreased. The influence of the interactions of each driving factor showed double factor enhancement and nonlinear enhancement. This study will provide a scientific reference for green and low-carbon development, emphasizing the need to pay more attention to environmental protection, develop the green economy vigorously, and promote the economic cycle, so as to achieve green development and reduce carbon emissions.

Keywords: Yellow River Basin; carbon emissions; driving factor detection; spatiotemporal differentiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon*
  • China
  • Conservation of Natural Resources
  • Economic Development
  • Rivers*
  • Spatial Analysis

Substances

  • Carbon