Supramolecular Hydrogel-Wrapped Gingival Mesenchymal Stem Cells in Cutaneous Radiation Injury

Cells. 2022 Sep 30;11(19):3089. doi: 10.3390/cells11193089.

Abstract

Radiation-induced skin wound/dermatitis is one of the common side effects of radiotherapy or interventional radiobiology. Gingiva-derived mesenchymal stem cells (GMSCs) were indicated to have therapeutic potentials in skin diseases. However, stem cells are prone to spread and difficult to stay in the skin for a long time, limiting their curative effects and application. This study investigated the therapeutic efficacy of Nap-GDFDFpDY (pY-Gel) self-assembled peptide hydrogel-encapsulated GMSCs to treat 137Cs γ-radiation-induced skin wounds in mice. The effects were evaluated by skin damage score, hind limb extension measurement and histological and immunohistochemical analysis. In vivo studies showed that pY-Gel self-assembled peptide hydrogel-encapsulated GMSCs could effectively improve wound healing in irradiated skin tissues. In addition, it was found that GMSCs conditioned medium (CM) could promote the proliferation, migration and DNA damage repair ability of skin cells after irradiation in human keratinocyte cell line HaCaT and normal human dermal fibroblasts (HFF). Mechanistically, GMSCs-CM can promote the expression of epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3) and matrix metalloproteinases (MMPs), suggesting that activation of the EGFR/STAT3 signaling pathway may be involved in the repair of skin cells after exposure to radiations. In conclusion, pY-Gel self-assembled peptide hydrogel-encapsulated GMSCs have a beneficial therapeutic effect on radiation-induced cutaneous injury and may serve as a basis of novel cells therapeutic approach.

Keywords: EGFR; GMSCs; STAT3; cutaneous radiation injury; pY-Gel.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Culture Media, Conditioned / pharmacology
  • ErbB Receptors / metabolism
  • Gingiva
  • Humans
  • Hydrogels / pharmacology
  • Mesenchymal Stem Cells* / metabolism
  • Mice
  • Radiation Injuries* / metabolism
  • Radiation Injuries* / therapy

Substances

  • Culture Media, Conditioned
  • Hydrogels
  • ErbB Receptors

Grants and funding

This study was supported by the National Natural Science Foundation of China (31971168, 31900891, 32071241, 82072331, 82103837), CAMS Innovation Fund for Medical Science (2021-I2M-1-042), the Fundamental Research Funds for the Central Universities (3332021066), the CIRP Open Fund of Radiation Protection Laboratories (CIRP-RRPE20220201 and CIRP-DTRI20220202) and the Natural Science Foundation of Tianjin (19JCYBJC26600 and 21JCYBJC01510).