gga-miR-449b-5p Regulates Steroid Hormone Synthesis in Laying Hen Ovarian Granulosa Cells by Targeting the IGF2BP3 Gene

Animals (Basel). 2022 Oct 9;12(19):2710. doi: 10.3390/ani12192710.

Abstract

MiRNAs have been found to be involved in the regulation of ovarian function as important post-transcriptional regulators, including regulators of follicular development, steroidogenesis, cell atresia, and even the development of ovarian cancer. In this study, we evaluated the regulatory role of gga-miR-449b-5p in follicular growth and steroid synthesis in ovarian granulosa cells (GCs) of laying hens through qRT-PCR, ELISAs, western blotting and dual-luciferase reporter assays, which have been described in our previous study. We demonstrated that gga-miR-449b-5p was widely expressed in granulosa and theca layers of the different-sized follicles, especially in the granulosa layer. The gga-miR-449b-5p had no significant effect on the proliferation of GCs, but could significantly regulate the expression of key steroidogenesis-related genes (StAR and CYP19A1) (p < 0.01) and the secretion of P4 and E2 (p < 0.01 and p < 0.05). Further research showed that gga-miR-449b-5p could target IGF2BP3 and downregulate the mRNA and protein expression of IGF2BP3 (p < 0.05). Therefore, this study suggests that gga-miR-449b-5p is a potent regulator of the synthesis of steroid hormones in GCs by targeting the expression of IGF2BP3 and may contribute to a better understanding of the role of functional miRNAs in laying hen ovarian development.

Keywords: IGF2BP3; gga-miR-449b-5p; granulosa cell; laying hens; proliferation; steroid synthesis.