Vaccine protection by Cryptococcus neoformans Δsgl1 is mediated by γδ T cells via TLR2 signaling

Mucosal Immunol. 2022 Jun;15(6):1416-1430. doi: 10.1038/s41385-022-00570-3. Epub 2022 Oct 13.

Abstract

We previously reported that administration of Cryptococcus neoformans Δsgl1 mutant vaccine, accumulating sterylglucosides (SGs) and having normal capsule (GXM), protects mice from a subsequent infection even during CD4+ T cells deficiency, a condition commonly associated with cryptococcosis. Here, we studied the immune mechanism that confers host protection during CD4+T deficiency. Mice receiving Δsgl1 vaccine produce IFNγ and IL-17A during CD4+ T (or CD8+ T) deficiency, and protection was lost when either cytokine was neutralized. IFNγ and/or IL-17A are produced by γδ T cells, and mice lacking these cells are no longer protected. Interestingly, ex vivo γδ T cells are highly stimulated in producing IFNγ and/or IL-17A by Δsgl1 vaccine, but this production was significantly decreased when cells were incubated with C. neoformans Δcap59/Δsgl1 mutant, accumulating SGs but lacking GXM. GXM modulates toll-like receptors (TLRs), including TLR2. Importantly, neither Δsgl1 nor Δcap59/Δsgl1 stimulate IFNγ or IL-17A production by ex vivo γδ T cells from TLR2-/- mice. Finally, TLR2-/- animals do not produce IL-17A in response to Δsgl1 vaccine and were no longer protected from WT challenge. Our results suggest that SGs may act as adjuvants for GXM to stimulate γδ T cells in producing IFNγ and IL-17A via TLR2, a mechanism that is still preserved upon CD4+ T deficiency.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cryptococcosis*
  • Cryptococcus neoformans*
  • Interleukin-17
  • Mice
  • Mice, Inbred C57BL
  • T-Lymphocytes
  • Toll-Like Receptor 2 / genetics
  • Vaccines*

Substances

  • Interleukin-17
  • Toll-Like Receptor 2
  • Vaccines
  • Tlr2 protein, mouse