Pulse-to-pulse detection of terahertz radiation emitted from the femtosecond laser ablation process

Opt Express. 2022 Jun 20;30(13):23622-23630. doi: 10.1364/OE.459588.

Abstract

Determining the dynamics of electrons and ions emitted from a target material during laser ablation is crucial for desirable control of laser processing. However, these dynamics are still challenging to understand because of a lack of ubiquitous spectroscopic tools to observe tangled-up dynamics appearing at ultrafast timescales. Here by harnessing highly sensitive single-shot terahertz time-domain spectroscopy using an echelon mirror, we investigate pulse-to-pulse temporal profile of terahertz radiation generated from the material surface. We clearly found that the carrier-envelope phase and the electric field amplitude of the terahertz waveform systematically vary between the pre- and post-ablation depending on the laser fluence and irradiated pulse numbers. Our results provide a stepping-stone towards perception of Coulomb explosion occurring throughout the laser ablation process, which is indispensable for future laser processing applications.