Metamaterial engineering for optimized photon absorption in unipolar quantum devices

Opt Express. 2022 Jun 6;30(12):20515-20531. doi: 10.1364/OE.456318.

Abstract

Metamaterials have played a major role in the development of optoelectronic devices due to their capability of coupling free-space radiation with active materials at the nanometer scale. In particular, unipolar photodetectors display highly improved performances when implemented into patch-antenna arrays. We study light-coupling and absorption in patch-antenna metamaterials by combining an experimental investigation, an analytical approach based on coupled mode theory and numerical simulations in order to understand how the geometrical parameters influence the electromagnetic energy transfer from the free-space to the active material. Our findings are applied to the design of optimized unipolar photodetectors with improved quantum efficiency.