Multi-environment robotic transitions through adaptive morphogenesis

Nature. 2022 Oct;610(7931):283-289. doi: 10.1038/s41586-022-05188-w. Epub 2022 Oct 12.

Abstract

The current proliferation of mobile robots spans ecological monitoring, warehouse management and extreme environment exploration, to an individual consumer's home1-4. This expanding frontier of applications requires robots to transit multiple environments, a substantial challenge that traditional robot design strategies have not effectively addressed5,6. For example, biomimetic design-copying an animal's morphology, propulsion mechanism and gait-constitutes one approach, but it loses the benefits of engineered materials and mechanisms that can be exploited to surpass animal performance7,8. Other approaches add a unique propulsive mechanism for each environment to the same robot body, which can result in energy-inefficient designs9-11. Overall, predominant robot design strategies favour immutable structures and behaviours, resulting in systems incapable of specializing across environments12,13. Here, to achieve specialized multi-environment locomotion through terrestrial, aquatic and the in-between transition zones, we implemented 'adaptive morphogenesis', a design strategy in which adaptive robot morphology and behaviours are realized through unified structural and actuation systems. Taking inspiration from terrestrial and aquatic turtles, we built a robot that fuses traditional rigid components and soft materials to radically augment the shape of its limbs and shift its gaits for multi-environment locomotion. The interplay of gait, limb shape and the environmental medium revealed vital parameters that govern the robot's cost of transport. The results attest that adaptive morphogenesis is a powerful method to enhance the efficiency of mobile robots encountering unstructured, changing environments.

MeSH terms

  • Animals
  • Biomimetics* / instrumentation
  • Biomimetics* / methods
  • Environment*
  • Equipment Design*
  • Locomotion
  • Robotics* / instrumentation
  • Robotics* / methods
  • Turtles / physiology