Quantitative Measurement of Cooperativity in H-Bonded Networks

J Am Chem Soc. 2022 Oct 26;144(42):19499-19507. doi: 10.1021/jacs.2c08120. Epub 2022 Oct 12.

Abstract

Cooperative H-bonding interactions are a feature of supramolecular networks involving alcohols. A family of phenol oligomers, in which the hydroxyl groups form intramolecular H-bonds, was used to investigate this phenomenon. Chains of intramolecular H-bonds were characterized using nuclear magnetic resonance (NMR) spectroscopy in solution and X-ray crystallography in the solid state. The phenol oligomers were used to make quantitative measurements of the effects of the intramolecular interactions on the strengths of intermolecular H-bonding interactions between the H-bond donor on the end of the chain and a series of H-bond acceptors. Intramolecular H-bonding interactions in the chain increase the strength of a single intermolecular H-bond between the terminal phenol and quinuclidine by up to 14 kJ mol-1 in the n-octane solution. Although the magnitude of the effect increases with the length of the H-bonded chain, the first intramolecular H-bond has a much larger effect than subsequent interactions. H-bond cooperativity is dominated by pairwise interactions between nearest neighbors, and longer range effects are negligible. The results were used to develop a simple model for cooperativity in H-bond networks using an empirical parameter κ to quantify the sensitivity of the H-bond properties of a functional group to polarization. The value of κ measured in these systems was 0.33, which means that formation of the first H-bond increases the polarity of the next H-bond donor in the chain by 33%. The cumulative cooperative effect in longer H-bonded chains reaches an asymptotic value, which corresponds to a maximum increase in the polarity of the terminal H-bond donor of 50%.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohols*
  • Hydrogen Bonding
  • Magnetic Resonance Spectroscopy
  • Phenols*
  • Quinuclidines

Substances

  • Phenols
  • Alcohols
  • Quinuclidines