Dual-polarization multi-angle retroreflective metasurface with bilateral transmission windows

Opt Express. 2022 May 23;30(11):19716-19730. doi: 10.1364/OE.460136.

Abstract

Metasurfaces have provided unprecedented degrees of freedom in manipulating electromagnetic (EM) waves and also granted high possibility of integrating multiple functions into one single meta-device. In this paper, we propose to incorporate the retroreflection function with transmission function by means of metasurface design and then demonstrate a dual-polarization multi-angle retroreflective metasurface (DMRM) with bilateral transmission bands. To achieve high-efficiency retroreflections, the compact bend structures (CBSs), which exhibit high reflections around 10.0 GHz in X band, are added onto the substrate of the DMRM. Two selected metasurface elements are periodically arranged so as to form 0-π-0 phase profile. By delicately adjusting the periodicity, high-efficiency retroreflections can be produced for both TE and TM-polarized waves under both vertical incidence and oblique incident angles ±50.0°, with an average efficiency of 90.2% at the designed frequency. Meanwhile, the two metasurface elements exhibit high transmission properties and minor phase disparities in S, C and Ku bands, resulting in bilateral transmission windows. Prototypes were designed and fabricated. Both simulated and measured results verified our design. This work provides an effective means of integrating retroreflection functions with other functions and may find applications in target tracking, radomes and other sensor integrated devices in higher frequency or even optical frequency bands.