Single beam Cs-Ne SERF atomic magnetometer with the laser power differential method

Opt Express. 2022 May 9;30(10):16541-16552. doi: 10.1364/OE.450571.

Abstract

We describe a single beam compact spin exchange relaxation free (SERF) magnetometer whose configuration is simple and compatible with the silicon-glass bonding micro-machining method. Due to the small size of the vapor cell utilized in a miniature atomic magnetometer, the wall relaxation could not be neglected. In this study we show that Ne buffer gas is more efficient than that of the other typically utilized gas species such as nitrogen and helium for wall relaxation reduction theoretically and experimentally. 3 Amagats (1 Amagat=2.69×1019/cm3) Ne gas is filled in the vapor cell and this is the first demonstration of a Cs-Ne SERF magnetometer. In order to reduce the laser amplitude noise and the large background detection offset, which is reported to be the main noise source of a single beam absorption SERF magnetometer, we developed a laser power differential method and a factor of approximately two improvement of the power noise suppression has been demonstrated. In order to reduce the power consumption of the magnetometer, the Cs based atomic magnetometer is studied. We did an optimization of the magnetometer and a sensitivity of 23fT/Hz1/2@100Hz has been achieved. This is the first demonstration of a single beam Cs based SERF magnetometer.