A posteriori localization of many-body excited states through simultaneous diagonalization

J Comput Chem. 2023 Jan 15;44(2):105-116. doi: 10.1002/jcc.27019. Epub 2022 Oct 10.

Abstract

In this paper we propose a numerical method to localize many-electron excited states. To characterize the electronic structure of the electronic excited states of a system, quantum chemistry methods typically yield a delocalized description of the excitations. Some a priori localization methods have been developed to provide an intuitive local picture of the excited states. They typically require a good strategy to separate the system of interest from its environment, or a set of a priori localized orbitals, that may reduce their computational accuracy. Here, we introduce an a posteriori method to localize delocalized many-body excited states directly obtained from quantum chemistry calculations. A localization metric for the excited states is defined from their representation as electron-hole pairs, which is encoded in the transition density matrix. This novel a posteriori strategy thus allows to localize excitons within a volume around selected fragments of a complex molecular system without tempering with its quantum chemical treatment. The method is tested on π-stacked oligomers of phenanthrenes and pyrenes. It is found to efficiently localize and separate the excitons according to their character while preserving the information about delocalized many-body states at a low computational cost.

Keywords: excited states; localization; particle-hole pairs.