Ab Initio Study of H-Bond Dynamics in Three-Component Crystals Comprising (DABCOH+ )n Polycationic Chains

Chemphyschem. 2023 Feb 1;24(3):e202200517. doi: 10.1002/cphc.202200517. Epub 2022 Nov 14.

Abstract

In this work, the dynamic character of hydrogen-bond (H-bond) networks in two three-component crystals comprising polycationic chains was described. The first studied system was 1,4-diazabicyclo[2.2.2]octan-1-ium (DABCOH+ ) sulfamate monohydrate, known for its large negative linear compressibility. The second analyzed material was the newly obtained polar salt co-crystal: 1,4-diazabicyclo[2.2.2]octan-1-ium sulfamate urea. X-ray diffraction measurements enabled us to study the H-bond systems in both crystals using the graph set analysis. Obtained structures served as the initial models for Born-Oppenheimer molecular dynamics computations. A detailed study of intermolecular interactions and power spectra was conducted. The analysis of time and space correlations between the changes in H-bonds enabled the detection of proton transfer occurring in both systems at 300 K. Further study of those dynamic phenomena was done using the Energy Decomposition Analysis for selected trajectory fragments. Our work should improve the understanding of dielectric and ferroelectric properties of hybrid organic-inorganic materials.

Keywords: ab initio calculations; crystal engineering; hydrogen bonds; molecular dynamics; proton transfer.