A Wide Bandgap Halide Perovskite Based Self-Powered Blue Photodetector with 84.9% of External Quantum Efficiency

Adv Mater. 2022 Dec;34(51):e2206932. doi: 10.1002/adma.202206932. Epub 2022 Nov 14.

Abstract

A self-powered, color-filter-free blue photodetector (PD) based on halide perovskites is reported. A high external quantum efficiency (EQE) of 84.9%, which is the highest reported EQE in blue PDs, is achieved by engineering the A-site monovalent cations of wide-bandgap perovskites. The optimized composition of formamidinium (FA)/methylammonium (MA) increases the heat of formation, yielding a uniform and smooth film. The incorporation of Cs+ ions into the FA/MA composition suppresses the trap density and increases charge-carrier mobility, yielding the highest average EQE of 77.4%, responsivity of 0.280 A W-1 , and detectivity of 5.08 × 1012 Jones under blue light. Furthermore, Cs+ improves durability under repetitive operations and ambient atmosphere. The proposed device exhibits peak responsivity of 0.307 A W-1 , which is higher than that of the commercial InGaN-based blue PD (0.289 A W-1 ). This study will promote the development of next-generation image sensors with vertically stacked perovskite PDs.

Keywords: blue photodetectors; compositional engineering; halide perovskites; image sensors; wide-bandgap materials.