Ink-lithographic fabrication of silver-nanocrystal-based multiaxial strain gauge sensors through the coffee-ring effect for voice recognition applications

Nano Converg. 2022 Oct 8;9(1):46. doi: 10.1186/s40580-022-00337-3.

Abstract

Human voice recognition techniques have remarkable potential for clinical applications because information from acoustic signals can reflect human body conditions. This paper reports the fabrication of Ag nanocrystal (NC)-based multiaxial wearable strain gauge sensors by ink-lithography for voice recognition systems. Benefiting from the one-step-device-fabrication strategy of ink-lithography, which can yield Ag NC patterns with specific dimensions and endow physical properties, the Ag NC-based multiaxial strain sensors can be fabricated on an ultrathin substrate (~ 6 μm). Additionally, the coffee-ring effect can be induced onto the Ag NC patterns to realize high sensitivity and angle dependence (gauge factors [Formula: see text] = 11.7 ± 1.2 and [Formula: see text] = 105.5 ± 20.1); moreover, the voice onset time for voice recognition can be detected by the sensors. These features assist in distinguishing between voiced and voiceless plosive contrasts via measurements of contact-based voice onset time differences and can act as a cornerstone for further advancements in wearable sensors as well as voice recognition and analysis.

Keywords: Coffee-ring effect; Ink-lithography; Multiaxial sensors; Silver nanocrystals; Surface chemistry; Voice recognition.