Endometrial and oviduct extra-cellular vescicles for in vitro equine sperm hyperactivation and oocyte fertilization

Theriogenology. 2022 Dec:194:35-45. doi: 10.1016/j.theriogenology.2022.09.023. Epub 2022 Sep 28.

Abstract

Unlike humans and many other mammalian species, conventional in vitro fertilization (IVF) in equine species is not successful. To mimic in vitro equine spermatozoon-oviduct interaction as close as possible to that which occurs in vivo, extracellular vesicles (EVs) secreted by the female genital tract were used. Three female genital tracts were collected at slaughterhouse from mares in late estrus. Ipsilateral proximal and apical horn endometrial explants were digested with collagenase and trypsin and cells obtained were cultured on insert system to allow their polarization. Ipsilateral oviducts were squeezed out to obtain spheroids. To produce EVs, proximal and apical horn endometrial cells and oviductal spheroids were cultured for three days in serum free medium. To trace interaction between spermatozoa and EVs by fluorescence microscopy, EVs were differently labeled. Pooled samples of ejaculated spermatozoa from three stallions were incubated in capacitating medium (CM) for 6 h and to induce hyperactivation for other 6 h in CM supplemented with different kind of EVs alone or in combination. A control was performed in absence of EVs. Sperm were assessed for motility by CASA system, EV incorporation by confocal microscopy and acrosomal reaction (AR) by staining with FITC-PNA/PI. In vitro fertilization was performed, and presumed zygotes were subjected to chromatin configuration. The results show that incorporation of EVs of the proximal horn does not take place, while apical horn EVs are incorporated in the head of the spermatozoon in 4 h. The EVs of oviductal spheroids are incorporated in the middle tract in 1 h. The rate of AR with EVs of the apical horn and oviductal spheroids were respectively 50.25% and 57.14%. When these EVs were added in combination, the rate of AR was 71.42%. In the control, the rate of AR was of 15%. After in vitro fertilization, 44% of oocytes showed male and female pronuclei, whereas no fertilization is obtained in the control. In conclusion, EVs from apical horn and oviduct could be involved in cell trafficking during equine semen hyperactivation, and their possible use in vitro could facilitate the development of equine reproductive biotechnologies.

Keywords: Capacitation; Equine spermatozoa; Extra-cellular vesicles; Fertilization; Oviducts; Secretoma.

MeSH terms

  • Animals
  • Fallopian Tubes
  • Female
  • Fertilization in Vitro / methods
  • Fertilization in Vitro / veterinary
  • Horses
  • Humans
  • Male
  • Mammals
  • Oocytes / physiology
  • Oviducts* / metabolism
  • Semen*
  • Sperm Capacitation / physiology
  • Spermatozoa / physiology