Trapping Alkali Halide Cluster Ions Inside the Cucurbit[7]uril Cavity

J Phys Chem Lett. 2022 Oct 20;13(41):9581-9588. doi: 10.1021/acs.jpclett.2c02583. Epub 2022 Oct 7.

Abstract

In this study, the distinctive behavior of cucurbit[n]uril (CB[n]), which captures a variety of alkali halide clusters inside the cavity during the droplet evaporation, has been investigated by using ion mobility spectrometry-mass spectrometry. Complexes of CB[7] with various alkali chloride cluster cations or anions generated during the electrospray ionization were studied, and their collision cross-section (CCS) values were obtained to determine whether these clusters were trapped inside the cavity or not. It was found that the clusters smaller than a specific critical size were trapped inside the CB[7] cavity in the gas phase, although trapping of alkali halide clusters at the given concentration is supposed to be unfavorable in solution. We suggest that the rapid solvent evaporation rapidly increases ion concentrations and subsequently forms alkali-chloride contact ion pairs; therefore, it may provide a specific environment to enable the formation of the inclusion complexes.