Asymmetrically Substituted 10H,10'H-9,9'-Spirobi[acridine] Derivatives as Hole-Transporting Materials for Perovskite Solar Cells

Angew Chem Int Ed Engl. 2022 Nov 25;61(48):e202212891. doi: 10.1002/anie.202212891. Epub 2022 Oct 25.

Abstract

Hole-transporting materials (HTMs) based on the 10H, 10'H-9,9'-spirobi [acridine] core (BSA50 and BSA51) were synthesized, and their electronic properties were explored. Experimental and theoretical studies show that the presence of rigid 3,6-dimethoxy-9H-carbazole moieties in BSA 50 brings about improved hole mobility and higher work function compared to bis(4-methoxyphenyl)amine units in BSA51, which increase interfacial hole transportation from perovskite to HTM. As a result, perovskite solar cells (PSCs) based on BSA50 boost power conversion efficiency (PCE) to 22.65 %, and a PSC module using BSA50 HTM exhibits a PCE of 21.35 % (6.5×7 cm) with a Voc of 8.761 V and FF of 79.1 %. The unencapsulated PSCs exhibit superior stability to devices employing spiro-OMeTAD, retaining nearly 90 % of their initial efficiency after 1000 h operation output. This work demonstrates the high potential of molecularly engineered spirobi[acridine] derivatives as HTMs as replacements for spiro-OMeTAD.

Keywords: 3,6-Dimethoxy-9H-Carbazole Acridine; Bis(4-Methoxyphenyl)Amine Acridine; Hole Transporting Materials; Perovskite Solar Cells; Perovskite Solar Modules.