Thermoelectric and Photovoltaic Properties of Mn-Doped Kesterite Cu2Zn1- xMnxSnSe4

Inorg Chem. 2022 Oct 17;61(41):16390-16404. doi: 10.1021/acs.inorgchem.2c02403. Epub 2022 Oct 5.

Abstract

The semiconductor Cu2ZnSnSe4 (CZTSe) is a promising candidate for both thermoelectric and photovoltaic energy harvesting applications due to a combination of features such as direct band gap, high absorption coefficient, and low thermal conductivity. We report the solid-state synthesis and characterization of Mn-doped Cu2Zn1-xMnxSnSe4 (x = 0, 0.05, 0.10, and 0.15) in an attempt to explore the effect of isovalent substitution at the Zn site. X-ray diffraction and Raman spectroscopy of all specimens confirmed the formation of a single-phase tetragonal kesterite structure (space group I4̅). The band gap obtained by UV-visible diffuse reflectance measurements was 1.42 eV for all compositions. Thermoelectric properties were measured in the range 300-785 K. Electrical resistivity was metallic and reduced on Mn doping, while the Seebeck coefficient exhibited a p-type semiconducting behavior that enhanced on Mn doping, with associated enhancement of the power factor. Lattice thermal conductivity showed a 1/T behavior, falling from about 1.9-2.7 W m-1 K-1 at 300 K to 0.51-0.9 W m-1 K-1 above 750 K. The combined effect of enhanced power factor and reduced lattice thermal conductivity resulted in a figure of merit ZT in the range of 0.19-0.42 above 750 K. Thin-film photovoltaic devices with a CZTSe absorber and an SnSe electron transport layer gave 3.2% efficiency.