Conservation of Allosteric Ligand Binding Sites in G-Protein Coupled Receptors

J Chem Inf Model. 2022 Oct 24;62(20):4937-4954. doi: 10.1021/acs.jcim.2c00209. Epub 2022 Oct 4.

Abstract

Despite the growing number of G protein-coupled receptor (GPCR) structures, only 39 structures have been cocrystallized with allosteric inhibitors. These structures have been studied by protein mapping using the FTMap server, which determines the clustering of small organic probe molecules distributed on the protein surface. The method has found druggable sites overlapping with the cocrystallized allosteric ligands in 21 GPCR structures. Mapping of Alphafold2 generated models of these proteins confirms that the same sites can be identified without the presence of bound ligands. We then mapped the 394 GPCR X-ray structures available at the time of the analysis (September 2020). Results show that for each of the 21 structures with bound ligands there exist many other GPCRs that have a strong binding hot spot at the same location, suggesting potential allosteric sites in a large variety of GPCRs. These sites cluster at nine distinct locations, and each can be found in many different proteins. However, ligands binding at the same location generally show little or no similarity, and the amino acid residues interacting with these ligands also differ. Results confirm the possibility of specifically targeting these sites across GPCRs for allosteric modulation and help to identify the most likely binding sites among the limited number of potential locations. The FTMap server is available free of charge for academic and governmental use at https://ftmap.bu.edu/.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Allosteric Regulation
  • Allosteric Site
  • Amino Acids*
  • Binding Sites
  • Ligands
  • Receptors, G-Protein-Coupled* / chemistry

Substances

  • Ligands
  • Receptors, G-Protein-Coupled
  • Amino Acids