Magnetic Field-Assisted Construction and Enhancement of Electrocatalysts

ChemSusChem. 2022 Dec 7;15(23):e202201551. doi: 10.1002/cssc.202201551. Epub 2022 Nov 8.

Abstract

Driven by the energy crisis and environmental pollution, developing sustainable clean energy is an effective strategy to realize carbon neutrality. Electrocatalytic reactions are crucial to sustainable energy conversion and storage technologies, and advanced electrocatalysts are required to improve the sluggish electrocatalytic reactions. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the construction of electrocatalysts and enhancement of electrocatalysis. In this Review, the recent progress of magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis is comprehensively summarized. Originating from the structure-activity-performance relationship of electrocatalysts, the fundamentals of the magnetic field-induced construction of electrocatalysts, including the magnetocaloric effect, nucleation and growth, and phase regulation, have been illustrated. In addition, the magnetic effect on the electrocatalytic reaction, namely, the magnetothermal, magnetohydrodynamic and micro magnetohydrodynamic, Maxwell stress, Kelvin force, and spin selection effects, are discussed. Finally, the perspective and challenges for magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis are proposed.

Keywords: electrocatalysis; electrocatalytic reaction; electromagnetic coupling; magnetic effect; magnetic field.

Publication types

  • Review