Investigating the effect of road lighting color temperature on road visibility in night foggy conditions

Appl Ergon. 2023 Jan:106:103899. doi: 10.1016/j.apergo.2022.103899. Epub 2022 Sep 30.

Abstract

Night foggy road conditions limit visibility distance of drivers and are associated with higher accident and fatality rates than other weather conditions. Therefore, ensuring road visibility in night foggy road is critical. However, it is difficult to reproduce fog on a real road and only a few studies have researched foggy road conditions and visibility in a laboratory as a small scale. Previous studies have suggested that a color temperature of road lighting is related to visibility. However, many have only investigated the effects of relative transmittance in limited indoor experiments, and the impacts of differences in transmittance on visibility have thus far not been studied in real-scale conditions. In this study, a real-scale test involving 91 subjects was conducted to investigate how the visibility distance under night foggy conditions is affected by different lighting color temperatures. Based on the real scale experiments, the correlation between the visibility distance and lighting color temperature was derived. Road lighting with a low color temperature (i.e., yellow) was found to provide longer visibility distances than that with high color temperatures under night foggy conditions having measured visibility of approximately 102m. The impact of the differences in lighting color increased as the visibility distance decreased. In contrast, road lighting with a high color temperature (i.e., white) improved driver visibility in higher-visibility conditions. Therefore, this study confirmed the correlation between lighting color temperature and visibility distance for different visibility conditions and could serve as a foundation for the development of roadway design standards as well as future studies.

Keywords: Color temperature; Foggy road; Real-scale test; Road lighting; Visibility distance.

MeSH terms

  • Accidents, Traffic*
  • Humans
  • Lighting*
  • Temperature
  • Weather