Sensitive fluorescence biosensor for SARS-CoV-2 nucleocapsid protein detection in cold-chain food products based on DNA circuit and g-CNQDs@Zn-MOF

Lebensm Wiss Technol. 2022 Nov 1:169:114032. doi: 10.1016/j.lwt.2022.114032. Epub 2022 Sep 26.

Abstract

SARS-CoV-2 isolation from cold-chain food products confirms the possibility of outbreaks through cold-chain food products. RNA extraction combined with RT-PCR is the primary method currently utilized for the detection of SARS-CoV-2. However, the requirement of hours of analytical time and the high price of RT-PCR hinder its worldwide implementation in food supervision. Here, we report a fluorescence biosensor for detection of SARS-CoV-2 N protein. The fluorescence biosensor was fabricated by aptamer-based conformational entropy-driven circuit where molecular beacon strands were labeled with graphitic carbon nitrides quantum dots@Zn-metal-organic framework (g-CNQDs@Zn-MOF) and Dabcyl. The detection of the N protein was achieved via swabbing followed by competitive assay using a fixed amount of N-48 aptamers in the analytical system. A fluorescence emission spectrum was employed for the detection. The detection limit of our fluorescence biosensor was 1.0 pg/mL for SARS-CoV-2 N protein, indicating very excellent sensitivity. The fluorescence biosensor did not exhibit significant cross-reactivity with other N proteins. Finally, the biosensor was successfully applied for the detection of SARS-CoV-2 N protein in actual cold-chain food products showing same excellent accuracy as RT-PCR method. Thus, our fluorescence biosensor is a promising analytical tool for rapid and sensitive detection of SARS-CoV-2 N protein.

Keywords: Aptamer; Cold-chain food product; Conformational entropy-driven circuit; G-CNQDs@Zn-MOF; SARS-CoV-2.