Enhancing bacterial cellulose production with hypoxia-inducible factors

Appl Microbiol Biotechnol. 2022 Nov;106(21):7099-7112. doi: 10.1007/s00253-022-12192-7. Epub 2022 Oct 3.

Abstract

Komagataeibacter xylinus is an aerobic strain that produces bacterial cellulose (BC). Oxygen levels play a critical role in regulating BC synthesis in K. xylinus, and an increase in oxygen tension generally means a decrease in BC production. Fumarate nitrate reduction protein (FNR) and aerobic respiration control protein A (ArcA) are hypoxia-inducible factors, which can signal whether oxygen is present in the environment. In this study, FNR and ArcA were used to enhance the efficiency of oxygen signaling in K. xylinus, and globally regulate the transcription of the genome to cope with hypoxic conditions, with the goal of improving growth and BC production. FNR and ArcA were individually overexpressed in K. xylinus, and the engineered strains were cultivated under different oxygen tensions to explore how their overexpression affects cellular metabolism and regulation. Although FNR overexpression did not improve BC production, ArcA overexpression increased BC production by 24.0% and 37.5% as compared to the control under oxygen tensions of 15% and 40%, respectively. Transcriptome analysis showed that FNR and ArcA overexpression changed the way K. xylinus coped with oxygen tension changes, and that both FNR and ArcA overexpression enhanced the BC synthesis pathway. The results of this study provide a new perspective on the effect of oxygen signaling on growth and BC production in K. xylinus and suggest a promising strategy for enhancing BC production through metabolic engineering. KEY POINTS: • K. xylinus BC production increased after overexpression of ArcA • The young's modulus is enhanced by the ArcA overexpression • ArcA and FNR overexpression changed how cells coped with changes in oxygen tension.

Keywords: ArcA; Bacterial cellulose; FNR; Komagataeibacter xylinus; Oxygen tension.

MeSH terms

  • Cellulose* / metabolism
  • Fumarates / metabolism
  • Gluconacetobacter xylinus* / genetics
  • Gluconacetobacter xylinus* / metabolism
  • Humans
  • Hypoxia
  • Nitrates / metabolism
  • Oxygen / metabolism

Substances

  • Cellulose
  • Nitrates
  • Oxygen
  • Fumarates