Removal of spiral turbulence by virtual electrodes through the use of a circularly polarized electric field

Chaos. 2022 Sep;32(9):093145. doi: 10.1063/5.0102031.

Abstract

Heart disease is the leading cause of death and is often accompanied by cardiac fibrillation. Defibrillation using the virtual electrode effects is a promising alternative compared to using the high-voltage electric shock in the clinic. Our earlier works [S. L. Murphy, K. D. Kochanek, J. Xu, and E. Arias, NCHS Data Brief 427 (2021); R. A. Gray, A. M. Pertsov, and J. Jalife, Nature 392, 75-78 (1998); F. X. Witkowski, L. J. Leon, P. A. Penkoske, W. R. Giles, M. L. Spano, W. L. Ditto, and A. T. Winfree, Nature 392, 78-82 (1998); M. Santini, C. Pandozi, G. Altamura, G. Gentilucci, M. Villani, M. C. Scianaro, A. Castro, F. Ammirati, and B. Magris, J. Interv. Card. Electrophysiol. 3, 45-51 (1999).] prove that, compared with other external electric fields, a low voltage circularly polarized electric field is more efficient in turning non-excitable defects in cardiac tissue into virtual electrodes. It, therefore, needs lower voltage to stimulate the excitation waves and causes less harm to reset the spiral turbulence of cardiac excitation for defibrillation. In this paper, we investigate the virtual electrode effect of multiple defects by the circularly polarized electric field for the removal of spiral turbulence. Considering different shapes, sizes, and distributions of multiple defects, we reveal the phase locking of stimulated excitations around multiple virtual electrodes. Furthermore, the circularly polarized electric field parameters are optimized to remove the spiral turbulence.

MeSH terms

  • Arrhythmias, Cardiac*
  • Computer Simulation
  • Electric Countershock
  • Electricity*
  • Electrodes
  • Heart
  • Humans