Unveiling Local Electronic Structure of Lanthanide-Doped Cs2 NaInCl6 Double Perovskites for Realizing Efficient Near-Infrared Luminescence

Adv Sci (Weinh). 2022 Nov;9(32):e2203735. doi: 10.1002/advs.202203735. Epub 2022 Sep 30.

Abstract

Lanthanide ion (Ln3+ )-doped halide double perovskites (DPs) have evoked tremendous interest due to their unique optical properties. However, Ln3+ ions in these DPs still suffer from weak emissions due to their parity-forbidden 4f-4f electronic transitions. Herein, the local electronic structure of Ln3+ -doped Cs2 NaInCl6 DPs is unveiled. Benefiting from the localized electrons of [YbCl6 ]3- octahedron in Cs2 NaInCl6 DPs, an efficient strategy of Cl- -Yb3+ charge transfer sensitization is proposed to obtain intense near-infrared (NIR) luminescence of Ln3+ . NIR photoluminescence (PL) quantum yield (QY) up to 39.4% of Yb3+ in Cs2 NaInCl6 is achieved, which is more than three orders of magnitude higher than that (0.1%) in the well-established Cs2 AgInCl6 via conventional self-trapped excitons sensitization. Density functional theory calculation and Bader charge analysis indicate that the [YbCl6 ]3- octahedron is strongly localized in Cs2 NaInCl6 :Yb3+ , which facilitates the Cl- -Yb3+ charge transfer process. The Cl- -Yb3+ charge transfer sensitization mechanism in Cs2 NaInCl6 :Yb3+ is further verified by temperature-dependent steady-state and transient PL spectra. Furthermore, efficient NIR emission of Er3+ with the NIR PLQY of 7.9% via the Cl- -Yb3+ charge transfer sensitization is realized. These findings provide fundamental insights into the optical manipulation of Ln3+ -doped halide DPs, thus laying a foundation for the future design of efficient NIR-emitting DPs.

Keywords: charge transfer; double perovskites; lanthanide ions; local electronic structure; near-infrared luminescence.