A short course of high-resistance, low-volume breathing exercise extends respiratory endurance and blunts cardiovascular responsiveness to constant load respiratory testing in healthy young adults

Respir Physiol Neurobiol. 2023 Jan:307:103974. doi: 10.1016/j.resp.2022.103974. Epub 2022 Sep 27.

Abstract

Our objective was to evaluate the effects of 6-weeks high-resistance, low-volume inspiratory muscle strength training (IMST) on respiratory endurance, blood pressure (BP) and heart rate (HR) responsiveness to high respiratory workloads. Ten healthy young adults completed two constant-load resistive breathing tests to exhaustion (Tlim) (target pressure =65 % maximal inspiratory pressure [PImax]; duty cycle = 0.7; breathing frequency matched to eupnea) separated by 6-weeks high-resistance (75 % maximal inspiratory pressure, PImax), low-volume (30 inspiratory efforts/day, 5 days/week) IMST. Throughout resistive breathing trials we measured beat-to-beat changes in BP and HR, mouth pressure, inspiratory muscle work and perceived exertion. POST resistive breathing tests revealed significant gains in endurance (PRE: 362.0 ± 46.6 s vs. POST: 663.8 ± 110.3 s, p = 0.003) and increases in respiratory muscle work (PRE: -9445 ± 1562 mmHg.s vs. POST: -16648 ± 3761 mmHg.s, p = 0.069). Conversely, systolic and diastolic BP responses, HR and ratings of perceived exertion all declined. Consistent with previous observations, 6 weeks high resistance, low volume IMST lowered casual resting SBP (p = 0.002), DBP (p = 0.007) and mean arterial pressure (p = 0.001) and improved static inspiratory pressure. High resistance, low volume inspiratory muscle strength training extends respiratory endurance and attenuates BP responsiveness in healthy, recreationally-active young adults. The outcomes have implications for improved athletic performance and for attaining and/or maintaining cardiorespiratory fitness.

Keywords: Blood pressure; Pressure time product; Respiratory training.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Breathing Exercises*
  • Cardiorespiratory Fitness*
  • Humans
  • Lung
  • Respiration
  • Respiratory Muscles / physiology
  • Young Adult