Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae)

Exp Parasitol. 2022 Nov:242:108394. doi: 10.1016/j.exppara.2022.108394. Epub 2022 Sep 28.

Abstract

The black cutworm (BCW), Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is one of the destructive cutworm species. Black cutworm is a highly polyphagous pest that feeds on more than 30 plants, many of which are of economic importance such as maize, sugar beet, and potato. The control of BCW larvae relies heavily on the application of synthetic insecticides which have a detrimental impact on human health and the natural environment. In addition, increasing insecticide resistance in many insect species requires a novel and sustainable approach to controlling insect pests. The endosymbionts of entomopathogenic nematodes (EPNs) (Xenorhabdus and Phorohabdus spp.) represent a newly emerging green approach to controlling a wide range of insect pests. In the current study, the oral and contact efficacy of cell suspension (4 × 107 cells ml-1) and cell-free supernatants of different symbiotic bacteria (X. nematophilai, X. bovienii, X. budapestensis, and P. luminescent subsp. kayaii) were evaluated against the mixed groups of 1st-2nd and 3rd-4th instars larvae of BCW under controlled conditions. The oral treatment of the cell suspension and cell-free supernatants resulted in higher mortality rates than contact treatments. In general, larval mortality was higher in the 1st-2nd instar larvae than in the 3rd-4th instar larvae. The highest (75%) mortality was obtained from the cell suspension of X. budapestensis. The results indicated that the oral formulations of the cell suspension and cell-free supernatants of bacterial strains may have a good control potential against the 1st-2nd larvae BCW. However, the efficacy of the cell suspension and cell-free supernatants of tested bacterial strains should be further evaluated under greenhouse and field conditions.

Keywords: Biological control; Cutworm; Entomopathogenic nematodes; Sutainable pest control; Symbiotic bacteria.

MeSH terms

  • Animals
  • Humans
  • Insecticides*
  • Larva / microbiology
  • Moths*
  • Pest Control, Biological / methods
  • Photorhabdus*
  • Sugars
  • Xenorhabdus*

Substances

  • Insecticides
  • Sugars