Transport and removal of spores of Bacillus subtilis in an alluvial gravel aquifer at varying flow rates and implications for setback distances

J Contam Hydrol. 2022 Dec:251:104080. doi: 10.1016/j.jconhyd.2022.104080. Epub 2022 Sep 23.

Abstract

To guarantee proper protection from fecally transmitted pathogen infections, drinking water wells should have a sufficiently large setback distance from potential sources of contamination, e.g. a nearby river. The aim of this study was to provide insight in regards to microbial contamination of groundwater under different flow velocities, which can vary over time due to changes in river stage, season or pumping rate. The effects of these changes, and how they affect removal parameters, are not completely understood. In this study, field tracer tests were carried out in a sandy gravel aquifer near Vienna, Austria to evaluate the ability of subsurface media to attenuate Bacillus subtilis spores, used as a surrogate for Cryptosporidium and Campylobacter. The hydraulic gradient between injection and extraction was controlled by changing the pumping rate (1, 10 l/s) of a pumping well at the test site, building upon previously published work in which tracer tests with a 5 l/s pumping rate were carried out. Attachment and detachment rate coefficients were determined using a HYDRUS-3D model and ranged from 0.12 to 0.76 and 0-0.0013 h-1, respectively. Setback distances were calculated based on the 60-day travel time, as well as a quantitative microbial risk assessment (QMRA) approach, which showed similar results at this site; around 700 m at the highest pumping rate. Removal rates (λ) in the field tests ranged from 0.2 to 0.3 log/m, with lower pumping rates leading to higher removal. It was shown that scale must be taken into consideration when determining λ for the calculation of safe setback distances.

Keywords: Campylobacter; Cryptosporidium; QMRA; Riverbank filtration; Safe setback distance; Tracer test.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis
  • Cryptosporidiosis*
  • Cryptosporidium*
  • Groundwater*
  • Humans
  • Spores
  • Water Movements