Controllable Structural Modulation: Assembling Variable Dimension Energetic Metal-Organic Frameworks via Free Protons

Inorg Chem. 2022 Oct 17;61(41):16248-16255. doi: 10.1021/acs.inorgchem.2c01932. Epub 2022 Sep 30.

Abstract

Herein, we provide an efficient strategy for constructing three-dimensional (3D) energetic coordination polymers (ECPs), namely, metal-organic frameworks (EMOFs), avoiding solvent coordination without changing the organic ligands or metal nodes. Three ECPs with the same ligand and metal center, namely, two-dimensional (2D) layer ECP [Pb(HOBTT)(H2O)2]n (1), 3D solvent-free EMOFs [Pb(HOBTT)]n (2), and dense [Pb3(OBTT)2]n (3) (H3OBTT = 4,5-bis(1-hydroxytetrazol-5-yl)-2H-1,2,3-triazole), were rationally designed and synthesized via free protons. As expected, the theoretical density of 3 (4.080 g·cm-3) is greater than those of 2 (3.299 g·cm-3) and 1 (3.055 g·cm-3). Thermal stabilities indicate that their decomposition temperature exceeds 300 °C. Theoretical calculations show that the detonation performance of 3 is better than that of 1 and 2. The detonation performance of 1-3 was further proven by laser irradiation.