Catalyst- and Stabilizer-Free Rational Synthesis of Ionic Polymer Nanoparticles in One Step for Oil/Water Separation Membranes

ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45800-45809. doi: 10.1021/acsami.2c11814. Epub 2022 Sep 29.

Abstract

Ionic polymer nanoparticles (IPNs) were synthesized in one pot by quaternization precipitation polymerization (QPP) as a novel polymerization technique. QPP eliminated the usage of high-cost ionic monomers and reduced the number of steps for the preparation of IPN. The monomers 2-(dimethylamino)ethyl methacrylate (DMAEMA) and 4-vinylbenzyl chloride (VBC) polymerized in the presence of azobisisobutyronitrile (AIBN) and underwent quaternization simultaneously, which yielded ionic poly(DMAEMA-co-VBC) nanoparticles in one step with the size of 50-80 nm without any stabilizer and catalyst. Similarly, 4-vinylpyridine (VP) and VBC polymerized in the presence of AIBN and underwent quaternization simultaneously, which yielded ionic poly(VP-co-VBC) nanoparticles in one step with the size of 70-90 nm without any stabilizer and catalyst. The as-synthesized IPN was further utilized for the fabrication of hydrophilic nanocomposite ultrafiltration membranes for oil/water separation. Fabricated hybrid membranes were characterized and studied for oil rejection properties. It exhibited an oil rejection of >96% with a pure water permeability of 219 L/m2 h bar.

Keywords: fouling; polymer nanoparticles; polysulfone; quaternization precipitation polymerization; ultrafiltration.