Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading

Med Biol Eng Comput. 2022 Nov;60(11):3281-3293. doi: 10.1007/s11517-022-02657-2. Epub 2022 Sep 28.

Abstract

Inserting a titanium implant in the bone tissue may modify its physiological loading and therefore cause bone resorption, via a phenomenon called stress-shielding. The local stress field around the bone-implant interphase (BII) created under shear loading may be influenced by different parameters such as the bone-implant contact (BIC) ratio, the bone Young's modulus, the implant roughness and the implant material. A 2-D finite element model was developed to model the BII and evaluate the impact of the aforementioned parameters. The implant roughness was described by a sinusoidal function (height 2Δ, wavelength λ), and different values of the BIC ratio were simulated. A heterogeneous distribution of the maximum shear stress was evidenced in the periprosthetic bone tissue, with high interfacial stress for low BIC ratios and low implant roughness and underloaded regions near the roughness valleys. Both phenomena may lead to stress-shielding-related effects, which were concentrated within a distance lower than 0.8λ from the implant surface. Choosing an implant material with mechanical properties matching those of bone tissue leads to a homogenized shear stress field and could help to prevent stress-shielding effects. Finally, the equivalent shear modulus of the BII was derived to replace its complex behavior with a simpler analytical model in future studies. Schematic illustrations of the 2-D finite element model used in the present study and spatial variation of the maximal shear stress in the periprosthetic bone tissue for different implant roughness and bone-implant contact ratios.

Keywords: Bone-implant interphase; Finite element modeling; Osseointegration; Shear loading; Stress-shielding.

MeSH terms

  • Biomechanical Phenomena
  • Bone and Bones
  • Dental Implants*
  • Finite Element Analysis
  • Interphase
  • Osseointegration / physiology
  • Stress, Mechanical
  • Titanium*

Substances

  • Dental Implants
  • Titanium