Tailoring Electrolyte Solvation for LiF-Rich Solid Electrolyte Interphase toward a Stable Li Anode

ACS Nano. 2022 Oct 25;16(10):16898-16908. doi: 10.1021/acsnano.2c06924. Epub 2022 Sep 28.

Abstract

A solid electrolyte interphase (SEI) with robust mechanical property and high ionic conductivity is imperative for high-performance lithium metal batteries since it can efficiently impede the growth of notorious lithium dendrites. However, it is difficult to form such a SEI directly from an electrolyte. In this work, a crowding dilutant modified ionic liquid electrolyte (M-ILE) has been developed for this purpose. Simulations and experiments indicate that the 1,2-difluorobenzene (1,2-dfBen) dilutant not only creates a crowded electrolyte environment to promote the interaction of Li+-FSI-, leading to abundant aggregate ion pairs (AGGs), but also participates in the reduction to construct a robust and high ionic-conductive SEI. With this M-ILE, Li/LiFePO4 cells achieve a capacity retention of 96% over 250 cycles with 9.5 mg cm-2 mass loading, and Li/LiNi0.5Co0.2Mn0.3O2 cells also deliver a discharge capacity of 132 mAh g-1 with a high retention of 88% after 100 cycles. Therefore, the use of a crowding diluent is considered to be an efficient way to construct an advanced SEI for a Li anode.

Keywords: crowding dilutant; ionic liquid electrolytes; lithium metal battery; solid electrolyte interphase; solvation structure.