A potential revolution in cancer treatment: A topical review of FLASH radiotherapy

J Appl Clin Med Phys. 2022 Oct;23(10):e13790. doi: 10.1002/acm2.13790. Epub 2022 Sep 27.

Abstract

FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.

Keywords: FLASH; cancer; radiotherapy.

Publication types

  • Review

MeSH terms

  • Humans
  • Monte Carlo Method
  • Neoplasms* / radiotherapy
  • Oxygen
  • Particle Accelerators*
  • Radiotherapy / methods
  • Radiotherapy Dosage

Substances

  • Oxygen