Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores

J Hazard Mater. 2023 Jan 15:442:130025. doi: 10.1016/j.jhazmat.2022.130025. Epub 2022 Sep 21.

Abstract

Developing efficient adsorbents with proper pore size for pharmaceutical removal is challenging. Water stable metal-organic frameworks (MOFs) are crystalline materials within the three-dimensional frameworks, which have already aroused increasing attention for their potential advantages with high surface area and abundant channels. However, whether or not the existing ones are performing their full capacities needs to be seriously considered. Herein, we precisely designed a series of fine-tuning hierarchically porous materials based on the water-stable Zr-based MOFs. The adsorption capacity and uptake rate of as-synthesized materials for pharmaceuticals are significantly improved. Fifteen isostructural frameworks with increasing finely tuned pore structures were successfully constructed with seven monocarboxylic modulators of increasing alkyl chain lengths. A strong correlated relationship between the mesoporous proportion and trapping kinetics can be found. Adsorption performance of 17 pharmaceuticals with various typical categories has been systematically studied over these as-synthesized materials. Competitors in natural wastewater were studied systematically. The competitive adsorption can selectively trap the target compounds in HA (humic acid), BSA (bovine serum albumin), and BHB (bovine hemoglobin) by an efficient size exclusion effect. Thus, this study offers helpful guidance for MOF modification to enhance the removal of micropollutants in natural wastewater and a fundamental understanding of the porosity-performance relationships.

Keywords: Hierarchically porous; MOFs; Pharmaceuticals; Structure; Tunable.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Humic Substances
  • Metal-Organic Frameworks*
  • Pharmaceutical Preparations
  • Serum Albumin, Bovine
  • Wastewater
  • Water

Substances

  • Metal-Organic Frameworks
  • Waste Water
  • Humic Substances
  • Serum Albumin, Bovine
  • Water
  • Pharmaceutical Preparations