3D-Printed Polymer-Infiltrated Ceramic Network with Antibacterial Biobased Silver Nanoparticles

ACS Appl Bio Mater. 2022 Oct 17;5(10):4803-4813. doi: 10.1021/acsabm.2c00509. Epub 2022 Sep 27.

Abstract

This work aimed at the antimicrobial functionalization of 3D-printed polymer-infiltrated biomimetic ceramic networks (PICN). The antimicrobial properties of the polymer-ceramic composites were achieved by coating them with human- and environmentally safe silver nanoparticles trapped in a phenolated lignin matrix (Ag@PL NPs). Lignin was enzymatically phenolated and used as a biobased reducing agent to obtain stable Ag@PL NPs, which were then formulated in a silane (γ-MPS) solution and deposited to the PICN surface. The presence of the NPs and their proper attachment to the surface were analyzed with spectroscopic methods (FTIR and Raman) and X-ray photoelectron spectroscopy (XPS). Homogeneous distribution of 13.4 ± 3.2 nm NPs was observed in the transmission electron microscopy (TEM) images. The functionalized samples were tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, validating their antimicrobial efficiency in 24 h. The bacterial reduction of S. aureus was 90% in comparison with the pristine surface of PICN. To confirm that the Ag-functionalized PICN scaffold is a safe material to be used in the biomedical field, its biocompatibility was demonstrated with human fibroblast (BJ-5ta) and keratinocyte (HaCaT) cells, which was higher than 80% in both cell lines.

Keywords: antibacterial activity; laccase enzyme; lignin; polyacrylates; polymer-infiltrated ceramic network; silver nanoparticles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents* / chemistry
  • Humans
  • Lignin
  • Metal Nanoparticles* / chemistry
  • Polymers / pharmacology
  • Printing, Three-Dimensional
  • Silver / chemistry
  • Silver / pharmacology
  • Staphylococcus aureus

Substances

  • Silver
  • Polymers
  • Lignin
  • Anti-Bacterial Agents
  • Anti-Infective Agents