Determining and interpreting protein lifetimes in mammalian tissues

Trends Biochem Sci. 2023 Feb;48(2):106-118. doi: 10.1016/j.tibs.2022.08.011. Epub 2022 Sep 23.

Abstract

The orchestration of protein production and degradation, and the regulation of protein lifetimes, play a central role in the majority of biological processes. Recent advances in proteomics have enabled the estimation of protein half-lives for thousands of proteins in vivo. What is the utility of these measurements, and how can they be leveraged to interpret the proteome changes occurring during development, aging, and disease? This opinion article summarizes leading technical approaches and highlights their strengths and weaknesses. We also disambiguate frequently used terminology, illustrate recent mechanistic insights, and provide guidance for interpreting and validating protein turnover measurements. Overall, protein lifetimes, coupled to estimates of protein levels, are essential for obtaining a deep understanding of mammalian biology and the basic processes defining life itself.

Keywords: long-lived proteins; metabolic labeling; protein half-life; protein turnover; proteomics; stable isotopes.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Mammals*
  • Proteolysis
  • Proteome*
  • Proteomics

Substances

  • Proteome