Periodic Coupled-Cluster Green's Function for Photoemission Spectra of Realistic Solids

J Phys Chem Lett. 2022 Oct 6;13(39):9122-9128. doi: 10.1021/acs.jpclett.2c02534. Epub 2022 Sep 26.

Abstract

We present an efficient implementation of the coupled-cluster Green's function (CCGF) method for simulating photoemission spectra of periodic systems. We formulate the periodic CCGF approach with Brillouin zone sampling in the Gaussian basis at the coupled-cluster singles and doubles (CCSD) level. To enable CCGF calculations of realistic solids, we propose an active-space self-energy correction scheme by combining CCGF with the cheaper many-body perturbation theory (GW) and implement the model order reduction (MOR) frequency interpolation technique. We find that the active-space self-energy correction and MOR techniques significantly reduce the computational cost of CCGF while maintaining the high accuracy. We apply the developed CCGF approaches to compute spectral properties and band structure of silicon (Si) and zinc oxide (ZnO) crystals using triple-ζ Gaussian basis sets and medium-size k-point sampling and find good agreement with experimental measurements.