Functional Epoxy Elastomer Integrating Self-Healing Capability and Degradability for a Flexible Stretchable Strain Sensor

ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44878-44889. doi: 10.1021/acsami.2c14919. Epub 2022 Sep 26.

Abstract

With the rapid development of flexible electronics and the increasing deterioration of the natural environment, functional and environmentally friendly flexible strain sensors have become one of the frontier research hotspots. Here, we propose a novel strategy to synthesize a functional epoxy elastomer integrating self-healing capability and degradability for flexible stretchable strain sensors. A carboxyl-terminated epoxy prepolymer was first synthesized using carboxyl-terminated PEG (PEG-COOH), 2,2'-dithiodibenzoic acid (DTSA), and 1,4-butanediol diglycidyl ether (BDDE), and then crosslinked by epoxidized soybean oil (ESO) to yield an epoxy elastomer. The obtained elastomer exhibited not only high tensile stress (5.07 MPa), large stretchability (477%), and high healing efficiency (92.5%) but also superior degradability in alkaline aqueous solution. The elastomer-based stretchable strain sensor with microstructure showed high sensitivity (GF = 176.71) and was successfully applied for detecting human motions and recognizing objects with various shapes. Moreover, the healed sensor could restore stable sensing ability. The prepared functional epoxy elastomer is of great significance for the preparation of environmentally friendly and high-performance sensors and is promising for applications in the fields of healthcare monitoring, intelligent robots, and wearable electronics.

Keywords: degradability; epoxy elastomer; poly(ethylene glycol); self-healing; strain sensor.