Dual Polarization Modality Fusion Network for Assisting Pathological Diagnosis

IEEE Trans Med Imaging. 2023 Jan;42(1):304-316. doi: 10.1109/TMI.2022.3210113. Epub 2022 Dec 29.

Abstract

Polarization imaging is sensitive to sub-wavelength microstructures of various cancer tissues, providing abundant optical characteristics and microstructure information of complex pathological specimens. However, how to reasonably utilize polarization information to strengthen pathological diagnosis ability remains a challenging issue. In order to take full advantage of pathological image information and polarization features of samples, we propose a dual polarization modality fusion network (DPMFNet), which consists of a multi-stream CNN structure and a switched attention fusion module for complementarily aggregating the features from different modality images. Our proposed switched attention mechanism could obtain the joint feature embeddings by switching the attention map of different modality images to improve their semantic relatedness. By including a dual-polarization contrastive training scheme, our method can synthesize and align the interaction and representation of two polarization features. Experimental evaluations on three cancer datasets show the superiority of our method in assisting pathological diagnosis, especially in small datasets and low imaging resolution cases. Grad-CAM visualizes the important regions of the pathological images and the polarization images, indicating that the two modalities play different roles and allow us to give insightful corresponding explanations and analysis on cancer diagnosis conducted by the DPMFNet. This technique has potential to facilitate the performance of pathological aided diagnosis and broaden the current digital pathology boundary based on pathological image features.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Image Processing, Computer-Assisted*
  • Semantics*