The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China

Sci Total Environ. 2023 Jan 10:855:158940. doi: 10.1016/j.scitotenv.2022.158940. Epub 2022 Sep 21.

Abstract

The land use and land cover change (LUCC) associated with climate change and human activities is supposed to exert a significant effect on ecosystem functions in arid inland regions. However, the role of LUCC in shaping the spatio-temporal patterns of ecosystem services and ecological security remain unclear, especially under different future LUCC scenarios. Here, we evaluated dynamic changes of ecosystem services and ecological security pattern (ESP) in the Hexi Regions based on LUCC and other environment variables by integrating morphological spatial pattern analysis (MSPA), entropy weight method and circuit theory. Our result showed that the LUCC was generally stable from 1980 to 2050. Compare to 2020, the land conversion under natural growth (NG), ecological protection (EP) and urban development (UD) scenarios in 2050 has changed by 10.30 %, 10.10 %, and 10.31 %, respectively. The forest, medium-cover grassland and water increased in the EP scenario, and construction land and cropland greatly expanded in the other two scenarios. Ecosystem services grew larger in the EP scenario by 2050 in comparison with the NG and UD scenarios. The ESP in the Hexi Regions has obvious spatial differences during 1980-2050. The larger ecological sources and less resistance corridors were mainly distributed in the central and eastern of the Hexi Regions with high ecosystem services. Conversely, fragmented ecological sources and larger resistance corridors were mostly located in the western regions blocked by sandy land, bare land or mountains. Compared to 2020, the area of ecological sources and pinch points under the EP scenario in 2050 increased by 4.10 × 103 km2 and 0.31 × 103 km2, respectively. The number of ecological corridors reduced while the length and resistance increased apart from the EP scenario. Our results highlighted the importance of ecological protection in shaping the LUCC, which further enhances the integrity of ecosystem and ecological security.

Keywords: Circuit theory; Ecological security pattern; Ecosystem services; LUCC simulation.

MeSH terms

  • China
  • Climate Change
  • Conservation of Natural Resources*
  • Ecosystem*
  • Forests
  • Humans