Tuning oxygen vacancy in Bi2WO6 by heteroatom doping for enhanced photooxidation-reduction properties

J Colloid Interface Sci. 2023 Jan;629(Pt B):133-146. doi: 10.1016/j.jcis.2022.09.031. Epub 2022 Sep 9.

Abstract

Heteroatom doping was recently regarded as an effective method to tune the band gap and improve the separation and transfer of photogenerated electron-hole pairs in semiconductor photocatalysts. Herein, a novel S,F-codoped Bi2WO6 (S,F-Bi2WO6) with suitable oxygen vacancies was synthesized via the hydrothermal-calcination and post-sulfurization, for efficient Cr(VI) reduction and methyl orange (MO) degradation under visible light. The amount of surface oxygen vacancies could be controlled by adjusting the S/F ratio during the doping process, which modulated the band structure and photogenerated charge behavior of Bi2WO6. The optimal S0.10F-Bi2WO6 exhibited an excellent photooxidation-reduction performance, which Cr(VI) reduction and MO degradation efficiencies were 1.6 and 2.6 times than those of the pristine Bi2WO6 without oxygen vacancy under visible-light, respectively. The enhanced photooxidation-reduction performance was because the right amount of oxygen vacancies could effectively narrow the bandgap and improve the separation efficiency of electron-hole pairs. Thus, this work offered a mild and simply approach for preparing heteroatom doped Bi2WO6 and a potential to be extended to the synthesis of other doped materials for environmental remediation.

Keywords: Bi(2)WO(6); Cr(VI) reduction; Methyl orange degradation; Oxygen vacancy; S/F-codoping.