Increasing electron density by surface plasmon resonance for enhanced photocatalytic CO2 reduction

J Environ Manage. 2022 Dec 1:323:116236. doi: 10.1016/j.jenvman.2022.116236. Epub 2022 Sep 20.

Abstract

The photocatalytic CO2 reduction reaction is a multi-electron process, which is greatly affected by the surface electron density. In this work, we synthesize Ag clusters supported on In2O3 plasmonic photocatalysts. The Ag-In2O3 compounds show remarkedly enhanced photocatalytic activity for CO2 conversion to CO compared to pristine In2O3. In the absence of any co-catalyst or sacrificial agent, the CO evolution rate of optimal Ag-In2O3-10 is 1.56 μmol/g/h, achieving 5.38-folds higher than that of In2O3 (0.29 μmol/g/h). Experimental verification and DFT calculation demonstrate that electrons transfer from Ag clusters to In2O3 on Ag-In2O3 compounds. In Ag-In2O3 compounds, Ag clusters serving as electron donators owing to the SPR behaviour are not helpful to decline photo-induced charge recomnation rate, but can provide more electron for photocatalytic reaction. Overall, the Ag clusters promote visible-light absorption and accelerate photocatalytic reaction kinetic for In2O3, resulting in the photocatalytic activity enhancement of Ag-In2O3 compounds. This work puts insight into the function of plasmonic metal on enhancing photocatalysis performance, and provides a feasible strategy to design and fabricate efficient plasmonic photocatalysts.

Keywords: Ag; CO(2) reduction; In(2)O(3); Plasmonic photocatalyst; SPR.