Novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives: synthesis and biological activity

Pest Manag Sci. 2023 Jan;79(1):274-283. doi: 10.1002/ps.7197. Epub 2022 Oct 17.

Abstract

Background: With the long-term use of traditional bactericides and antiviral agents, drug resistance has become increasingly prominent, resulting in impaired crop growth and yields. Based on this, the introduction of small molecular active groups into natural products has become the direction of research for green pesticides.

Results: In this study, novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives were explored. Among them, D4 exhibited good inhibitory effects on plant bacteria. It is worth mentioning that D4 (15 μg ml-1 ) exhibited an excellent median effective concentration (EC50 ) value against Xanthomonas oryzae pv. oryzae (Xoo), which was better than bismerthiazol (73 μg ml-1 ) and thiodiazole copper (100 μg ml-1 ). The EC50 for D4 was much lower than the two positive controls (bismerthiazol, thiodiazole copper), making D4 more potent in this assay of bacterial growth inhibition. In addition, mechanism research using scanning electron microscopy revealed that D4 could cause deformation or rupture of the cell membranes of Xoo and Pseudomonas syringae pv. actinidiae. Moreover, D4 exhibited the best EC50 for in vivo curative (132 μg ml-1 ) and protective (101 μg ml-1 ) activities against tobacco mosaic virus, which were more effective than ningnanmycin. Microscale thermophoresis data suggested that D4 [dissociation constant (Kd ) = 0.038 ± 0.011 μmol L-1 ] exhibited a stronger binding capacity than the control agent ningnanmycin (Kd = 4.707 ± 2.176 μmol L-1 ).

Conclusion: The biological activity data and mode of action demonstrated that D4 had the best antibacterial and antiviral effects. Compound D4 discovered in the current work may be a very promising agricultural drug. © 2022 Society of Chemical Industry.

Keywords: SEM; TMV-CP; biological activity; flavonoid derivatives; microscale thermophoresis.

MeSH terms

  • Copper*
  • Flavonoids* / pharmacology

Substances

  • 1,3,4-oxadiazole
  • Flavonoids
  • Copper