Review of Current Accepted Practices in Identification of the Breast Lumpectomy Tumor Bed

Adv Radiat Oncol. 2022 Jan 27;7(5):100848. doi: 10.1016/j.adro.2021.100848. eCollection 2022 Sep-Oct.

Abstract

Purpose: Of the 260,000 women diagnosed with breast cancer annually in the United States, more than 60% are treated with breast-conserving surgery or lumpectomy, followed by radiation to decrease the chance of local recurrence. More than 70% of breast cancer recurrences are localized to the original tumor cavity. Hence, targeted radiation therapy after lumpectomy is critical for recurrence prevention. With 30,000 patients annually opting for oncoplastic reconstruction of the breast after lumpectomy to improve cosmesis, the resulting tissue rearrangement increases the difficulty for radiation oncologists to accurately delineate the cavity when planning radiation therapy. Owing to the absence of a standardized protocol, it is important to assess the efficacy of various methods used to mark the tumor cavity for improved delineation.

Methods and materials: A keyword search and analysis was used to compile relevant articles on PubMed (National Center for Biotechnology Information).

Results: Currently, a common practice for tumor cavity localization is applying titanium surgical clips to the borders of lumpectomy cavity. Tissue movement and seroma formation both impact the positioning of surgical clips within the tumor cavity and lead to significant interobserver variability. Furthermore, the main application of surgical clips is to control the small vessels during surgery, and that can create confusion when the same clips are used for tumor bed localization. All alternative solutions present more precise tumor bed delineation but possess individual concerns with workflow integration, patient comfort, and accuracy. Though liquid-based fiducials were found to be the most effective for delineating tumor cavities, there are still drawbacks for clinical use.

Conclusions: These findings should encourage medical innovators to develop novel techniques for tumor cavity marking to increase delineation accuracy and effectively target at-risk tissue. Future solutions in this space should consider the properties of liquid-based fiducial markers to improve radiation oncologists' ability to precisely delineate the tumor cavity.

Publication types

  • Review