Predictable Chikungunya Infection Dynamics in Brazil

Viruses. 2022 Aug 26;14(9):1889. doi: 10.3390/v14091889.

Abstract

Chikungunya virus (CHIKV) was first imported into the Caribbean in 2013 and subsequently spread across the Americas. It has infected millions in the region and Brazil has become the hub of ongoing transmission. Using Seasonal Autoregressive Integrated Moving Average (SARIMA) models trained and validated on Brazilian data from the Ministry of Health’s notifiable diseases information system, we tested the hypothesis that transmission in Brazil had transitioned from sporadic and explosive to become more predictable. Consistency weighted, population standardized kernel density estimates were used to identify municipalities with the most consistent inter-annual transmission rates. Spatial clustering was assessed per calendar month for 2017−2021 inclusive using Moran’s I. SARIMA models were validated on 2020−2021 data and forecasted 106,162 (95%CI 27,303−200,917) serologically confirmed cases and 339,907 (95%CI 35,780−1035,449) total notifications for 2022−2023 inclusive, with >90% of cases in the Northeast and Southeast regions. Comparing forecasts for the first five months of 2022 to the most up-to-date ECDC report (published 2 June 2022) showed remarkable accuracy: the models predicted 92,739 (95%CI 20,685−195,191) case notifications during which the ECDC reported 92,349 case notifications. Hotspots of consistent transmission were identified in the states of Para and Tocantins (North region); Rio Grande do Norte, Paraiba and Pernambuco (Northeast region); and Rio de Janeiro and eastern Minas Gerais (Southeast region). Significant spatial clustering peaked during late summer/early autumn. This analysis highlights how CHIKV transmission in Brazil has transitioned, making it more predictable and thus enabling improved control targeting and site selection for trialing interventions.

Keywords: Aedes; arbovirus; epidemiology; intervention; transmission.

MeSH terms

  • Brazil / epidemiology
  • Chikungunya Fever*
  • Chikungunya virus*
  • Cities
  • Humans
  • Spatial Analysis

Grants and funding

This research received no external funding.