Textile-Based Wearable Sensor for Skin Hydration Monitoring

Sensors (Basel). 2022 Sep 15;22(18):6985. doi: 10.3390/s22186985.

Abstract

This research describes a wearable skin hydration sensor based on cotton textile to determine the state of hydration within the skin via impedance analysis. The sensor structure comprises a textile substrate, thermoplastic over-layer, conductive patterns, and encapsulant, designed for stable and reliable monitoring of the skin's impedance change in relation to hydration level. The porcine skin with different hydration levels was prepared as a model system of the skin, and the textile-based sensor carefully investigated the porcine skin samples' impedance characteristics. The impedance study reveals that (1) the total impedance of skin decreases as its hydration level increases, and (2) the impedance of the stratum corneum and epidermis layers are more dominantly affected by the hydration level of the skin than the dermis layer. Even after repetitive bending cycles, the impedance data of skin measured by the sensor exhibit a reliable dependence on the skin hydration level, which validates the flexibility and durability of the sensor. Finally, it is shown that the textile-based skin hydration sensor can detect various body parts' different hydration levels of human skin while maintaining a stable conformal contact with the skin. The resulting data are well-matched with the readings from a commercial skin hydration sensor.

Keywords: skin hydration; skin impedance; skin monitoring; textile sensor; wearable sensor.

MeSH terms

  • Electric Impedance
  • Humans
  • Skin
  • Textiles*
  • Wearable Electronic Devices*