Kinetics of Pectin Biopolymer Facial Erosion Characterized by Fluorescent Tracer Microfluidics

Polymers (Basel). 2022 Sep 19;14(18):3911. doi: 10.3390/polym14183911.

Abstract

Pectin is a plant-derived heteropolysaccharide that has been implicated in drug development, tissue engineering, and visceral organ repair. Pectin demonstrates remarkable biostability in a variety of physiologic environments but is biodegradable in water. To understand the dynamics of pectin biodegradation in basic environments, we developed a microfluidics system that facilitated the quantitative comparison of pectin films exposed to facial erosion. Pectin biodegradation was assessed using fluorescein tracer embedded in pectin, trypan blue quenching of released fluorescence, and highly sensitive microfluorimetry. The microfluidic perfusate, delivered through 6 um-pore synthetic membrane interface, demonstrated nonlinear erosion of the pectin film; 75% of tracer was released in 28 h. The microfluidics system was used to identify potential modifiers of pectin erosion. The polyphenolic compound tannic acid, loaded into citrus pectin films, demonstrated a dose-dependent decrease in pectin erosion. Tannic acid had no detectable impact on the physical properties of citrus pectin including adhesivity and cohesion. In contrast, tannic acid weakened the burst strength and cohesion of pectins derived from soy bean and potato sources. We conclude that facial erosion may explain the biostability of citrus pectin on visceral organ surfaces as well as provide a useful method for identifying modifiers of citrus pectin biodegradation.

Keywords: adhesion; biodegradation; biostability; cohesion; erosion; kinetics; microfluidics; microfluorimetry; pectin; tannic acid.