Benefits of Valsartan and Amlodipine in Lipolysis through PU.1 Inhibition in Fructose-Induced Adiposity

Nutrients. 2022 Sep 12;14(18):3759. doi: 10.3390/nu14183759.

Abstract

High fructose intake has been implicated in obesity and metabolic syndrome, which are related to increased cardiovascular mortality. However, few studies have experimentally examined the role of renin-angiotensin system blockers and calcium channel blockers (CCB) in obesity. We investigated the effects of valsartan (an angiotensin II receptor blocker) and amlodipine (a CCB) on lipolysis through the potential mechanism of PU.1 inhibition. We observed that high fructose concentrations significantly increased adipose size and triglyceride, monoacylglycerol lipase, adipose triglyceride lipase, and stearoyl-CoA desaturase-1 (SCD1), activating transcription factor 3 and PU.1 levels in adipocytes in vitro. Subsequently, PU.1 inhibitor treatment was able to reduce triglyceride, SCD1, and PU.1 levels. In addition, elevated levels of triglyceride and PU.1, stimulated by a high fructose concentration, decreased with valsartan and amlodipine treatment. Overall, these findings suggest that high fructose concentrations cause triacylglycerol storage in adipocytes through PU.1-mediated activation. Furthermore, valsartan and amlodipine treatment reduced triacylglycerol storage in adipocytes by inhibiting PU.1 activation in high fructose concentrations in vitro. Thus, the benefits of valsartan and amlodipine in lipolysis may be through PU.1 inhibition in fructose-induced adiposity, and PU.1 inhibition might have a potential therapeutic role in lipolysis in fructose-induced obesity.

Keywords: PU.1; activating transcription factor 3; adiposity; calcium channel blocker; fructose; renin–angiotensin system blocker.

MeSH terms

  • Activating Transcription Factor 3 / metabolism
  • Adiposity
  • Amlodipine* / pharmacology
  • Angiotensin Receptor Antagonists
  • Antihypertensive Agents / pharmacology
  • Blood Pressure
  • Calcium Channel Blockers / pharmacology
  • Fructose / adverse effects
  • Humans
  • Hypertension* / drug therapy
  • Lipase / metabolism
  • Lipolysis
  • Monoacylglycerol Lipases / metabolism
  • Obesity / drug therapy
  • Obesity / etiology
  • Stearoyl-CoA Desaturase / metabolism
  • Tetrazoles / pharmacology
  • Tetrazoles / therapeutic use
  • Triglycerides / pharmacology
  • Valsartan / metabolism
  • Valsartan / pharmacology
  • Valsartan / therapeutic use

Substances

  • Activating Transcription Factor 3
  • Angiotensin Receptor Antagonists
  • Antihypertensive Agents
  • Calcium Channel Blockers
  • Tetrazoles
  • Triglycerides
  • Amlodipine
  • Fructose
  • Valsartan
  • Stearoyl-CoA Desaturase
  • Monoacylglycerol Lipases
  • Lipase