A Systemic Insight into Exohedral Actinides and Endohedral Borospherenes: An&Bm and An@Bn (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40; n = 36, 38, 40)

Molecules. 2022 Sep 16;27(18):6047. doi: 10.3390/molecules27186047.

Abstract

A series of exohedral actinide borospherenes, An&Bm, and endohedral borospherenes, An@Bn (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40; n = 36, 38, 40), have been characterized by density functional theory calculations. The electronic structures, chemical bond topological properties and spectra have been systematically investigated. It was found that An@Bn is more stable than An&Bn in terms of structure and energy, and UB36 in an aqueous solution is the most stable molecular in this research. The IR and UV-vis spectra of An&Bm and An@Bn are computationally predicted to facilitate further experimental investigations. Charge-transfer spectroscopy decomposes the total UV-Vis absorption curve into the contributions of different excitation features, allowing insight into what form of electronic excitation the UV-Vis absorption peak is from the perspective of charge transfer between the An atoms and borospherenes.

Keywords: actinides; bonding characteristic; borospherenes; density functional calculations.